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2 March 2023

Problem 1 (Chap 7, Ex 1). Suppose that {a,}52 is a sequence of real numbers such
that the partial sums A, = a1 + -+ + a, are bounded. Prove that the Dirichlet series
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converges for Re(s) > 0 and defines a holomorphic function in this half-plane.

To apply Theorem 5.2 of Chapter 2, we want to show that the series is uniformly
convergent on any compact subset of the half-plane. Assume |A4,| < M for all n € N.
Using summation by parts, for N € N, we have
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Since |Ax/N®| < M/NEe(s) — 0 uniformly on any closed half-plane Re(s) > & > 0 as
N — o0, it suffices to show that the series > A,,(n~°—(n+1)"*) is uniformly convergent
on any compact subset of Re(s) > 0. Let g(z) = 27° so that ¢/(z) = —sz7*"!. By
considering z(t) =n+t, ¢t € [0,1], we have
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On any compact set K, |s| < B and Re(s) > § for some B,d > 0, so
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is uniformly convergent on K.

Problem 2 (Chap 7, Ex 5). Consider the following function
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(a) Prove that the series defining ¢ converges for Re(s) > 0 and defines a holomorphic
function in that half-plane.

(b) Show that for s > 1 one has {(s) = (1 — 2175)((s).

(¢) Conclude, since C is given as an alternating series, that ¢ has no zeros on the
segment 0 < s < 1. FExtend this last assertion to s = 0 by using the functional
equation.

(a) Since partial sums of Y _(—1)""! are certainly bounded, the previous problem applies.
(b) On s > 1, as ¢(s) and ((s) are absolutely convergent (as series), we compute that
n+1

= Z % Z Z_:l (2i)3 = 2175<(5)-
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(c) Notice that at s = 1, the simple pole of ((s) cancels with the zero of 1 — 2175 so

both sides of the identity in (b) are holomorphic functions on Re(s) > 0 that agree on

s > 1. Thus the identity holds on the whole half-plane. Focusing on 0 < s < 1, we have
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for n € N, so ((s) > 0, and hence ((s) # 0 on 0 < s < 1 by the identity. Finally, using
the functional equation
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we see that at s = 0, the simple pole of (1 —s) cancels with the simple zero of 1/T'(s/2),
so the RHS is nonzero. This concludes that ((s) # 0 on [0, 1).

((s) =m (1 —s),

Problem 3 (cf. Chap 7, Ex 8). Show that ¢ has infinitely many zeros in the critical
strip 0 < Re(s) < 1.

We first prove that the entire function £ = s(1 — s)&(s) has growth order 1. To show
that Pg < 1, we shall use the representation

) =y -1+ [ @ ) du
1

s—1 S

where (u) = Y07, e~™"u_ Because s(1 — s) is a polynomial, it suffices to show that
the integral term in £(s) defines an entire function of growth < 1. For s = 0 + it € C,
take any k € N such that (jo| +1)/2 < k < || + 2, then
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This shows that growth defined by the integral is < 1. On the other hand, we want to
show that Pg = 1: using the defining equation for £, we have
E(s) = s(1 —s)m /T (s/2)¢(s)-

Consider s along the positive real axis, more specifically take s = 2m for m € N. Note
that! ¢(2m) — 1 as m — oo. So if |[77%/2T'(s/2)| < AePl*I" | we have
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for all m. Taking m — oo shows that p > 1 (e.g. by ratio test). This concludes that
the growth order of £ is exactly 1.

Next, observe that £ satisfies the following properties:

le.g. Using Riemann sums, one has 1+ [;°t P dt <32, n™P <1+ [°t~Pdt for p > 1.



° é is an entire function with zeros precisely the zeros of {(s) in the critical strip:
this follows directly from the defining equation of £. (So it suffices to show that
the zeros of ¢ is infinite.)

o £(s) = s(1 — 5)€(s) satisfies £(s) = £(1 — s).

Consider the function F(s) = £(s + 1/2). By the above, this an even entire function.
Define G(s) = F(s'/?), which is also entire by an argument as in Tutorial 2 (Problem 3,

Step 2) because F is even. Since F' has order 1, G has order 1/2. The following lemma
shows that G (and so F' and £) have infinitely many zeros, and thus completes the proof.

Lemma (cf. Chap 5, Ex 14). If h is entire and of growth order p that is non-integral,
then h has infinitely many zeros.

Indeed, if h has finitely many zeros, Hadamard’s theorem implies that it can be written
as h(z) = p(z)e?®). But the RHS has growth order degq (Ex!), so a contradiction to
the assumption p is non-integral.



