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Problem 1 (Chap 7, Ex 1). Suppose that {an}∞n=1 is a sequence of real numbers such
that the partial sums An = a1 + · · ·+ an are bounded. Prove that the Dirichlet series

∞∑
n=1

an
ns

converges for Re(s) > 0 and defines a holomorphic function in this half-plane.

To apply Theorem 5.2 of Chapter 2, we want to show that the series is uniformly
convergent on any compact subset of the half-plane. Assume |An| ≤ M for all n ∈ N.
Using summation by parts, for N ∈ N, we have

N∑
n=1

an
ns

=
AN
Ns

+
N−1∑
n=1

An(n−s − (n+ 1)−s).

Since |AN/Ns| ≤ M/NRe(s) → 0 uniformly on any closed half-plane Re(s) ≥ δ > 0 as
N →∞, it suffices to show that the series

∑
An(n−s−(n+1)−s) is uniformly convergent

on any compact subset of Re(s) > 0. Let g(z) = z−s so that g′(z) = −sz−s−1. By
considering z(t) = n+ t, t ∈ [0, 1], we have

|(n+ 1)−s − n−s)| =

∣∣∣∣∣
∫ 1

0

g′(z(t))z′(t) dt

∣∣∣∣∣ ≤ |s|
∫ 1

0

(n+ t)−Re(s)−1 dt ≤ |s|
nRe(s)+1

.

On any compact set K, |s| ≤ B and Re(s) ≥ δ for some B, δ > 0, so

∞∑
n=1

|An(n−s − (n+ 1)−s)| ≤
∞∑
n=1

M |s|
nRe(s)+1

≤MB

∞∑
n=1

1

nδ+1

is uniformly convergent on K.

Problem 2 (Chap 7, Ex 5). Consider the following function

ζ̃(s) = 1− 1

2s
+

1

3s
− · · · =

∞∑
n=1

(−1)n+1

ns
.

(a) Prove that the series defining ζ̃ converges for Re(s) > 0 and defines a holomorphic
function in that half-plane.

(b) Show that for s > 1 one has ζ̃(s) = (1− 21−s)ζ(s).

(c) Conclude, since ζ̃ is given as an alternating series, that ζ has no zeros on the
segment 0 < s < 1. Extend this last assertion to s = 0 by using the functional
equation.

(a) Since partial sums of
∑

(−1)n+1 are certainly bounded, the previous problem applies.

(b) On s > 1, as ζ(s) and ζ̃(s) are absolutely convergent (as series), we compute that

ζ(s)− ζ̃(s) =

∞∑
n=1

1

ns
−
∞∑
n=1

(−1)n+1

ns
=

∞∑
n=1

2

(2n)s
= 21−sζ(s).
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(c) Notice that at s = 1, the simple pole of ζ(s) cancels with the zero of 1 − 21−s, so
both sides of the identity in (b) are holomorphic functions on Re(s) > 0 that agree on
s > 1. Thus the identity holds on the whole half-plane. Focusing on 0 < s < 1, we have

1

(2n− 1)s
− 1

(2n)s
> 0

for n ∈ N, so ζ̃(s) > 0, and hence ζ(s) 6= 0 on 0 < s < 1 by the identity. Finally, using
the functional equation

ζ(s) = πs−1/2
Γ((1− s)/2)

Γ(s/2)
ζ(1− s),

we see that at s = 0, the simple pole of ζ(1−s) cancels with the simple zero of 1/Γ(s/2),
so the RHS is nonzero. This concludes that ζ(s) 6= 0 on [0, 1).

Problem 3 (cf. Chap 7, Ex 8). Show that ζ has infinitely many zeros in the critical
strip 0 ≤ Re(s) ≤ 1.

We first prove that the entire function ξ̃ = s(1 − s)ξ(s) has growth order 1. To show
that ρξ̃ ≤ 1, we shall use the representation

ξ(s) =
1

s− 1
− 1

s
+

∫ ∞
1

(u−s/2−1/2 + us/2−1)ψ(u) du,

where ψ(u) =
∑∞
n=1 e

−πn2u. Because s(1 − s) is a polynomial, it suffices to show that
the integral term in ξ(s) defines an entire function of growth ≤ 1. For s = σ + it ∈ C,
take any k ∈ N such that (|σ|+ 1)/2 ≤ k ≤ |σ|+ 2, then∫ ∞

1

|(u−s/2−1/2 + us/2−1)ψ(u)| du ≤
∫ ∞
1

(u−(σ−1)/2−1 + uσ/2−1)ψ(u) du

≤ 2

∫ ∞
1

uk−1
∞∑
n=1

e−πn
2u du

≤ 2

∞∑
n=1

∫ ∞
0

uk−1e−πn
2u du

= 2

∞∑
n=1

1

(πn2)k

∫ ∞
0

uk−1e−u du

≤ CΓ(k) = C(k − 1)!

≤ Ce(k−1) log(k−1) ≤ Ce(|σ|+1) log(|σ|+1).

This shows that growth defined by the integral is ≤ 1. On the other hand, we want to
show that ρξ̃ ≥ 1: using the defining equation for ξ, we have

ξ̃(s) = s(1− s)π−s/2Γ(s/2)ζ(s).

Consider s along the positive real axis, more specifically take s = 2m for m ∈ N. Note
that1 ζ(2m)→ 1 as m→∞. So if |π−s/2Γ(s/2)| ≤ AeB|s|ρ , we have

(m− 1)!

πme2ρBmρ ≤ A

for all m. Taking m → ∞ shows that ρ > 1 (e.g. by ratio test). This concludes that
the growth order of ξ̃ is exactly 1.

Next, observe that ξ̃ satisfies the following properties:

1e.g. Using Riemann sums, one has 1 +
∫∞
2 t−p dt ≤

∑∞
n=1 n

−p ≤ 1 +
∫∞
1 t−p dt for p > 1.
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• ξ̃ is an entire function with zeros precisely the zeros of ζ(s) in the critical strip:
this follows directly from the defining equation of ξ. (So it suffices to show that
the zeros of ξ̃ is infinite.)

• ξ̃(s) = s(1− s)ξ(s) satisfies ξ̃(s) = ξ̃(1− s).

Consider the function F (s) = ξ̃(s + 1/2). By the above, this an even entire function.
Define G(s) = F (s1/2), which is also entire by an argument as in Tutorial 2 (Problem 3,
Step 2) because F is even. Since F has order 1, G has order 1/2. The following lemma
shows that G (and so F and ξ̃) have infinitely many zeros, and thus completes the proof.

Lemma (cf. Chap 5, Ex 14). If h is entire and of growth order ρ that is non-integral,
then h has infinitely many zeros.

Indeed, if h has finitely many zeros, Hadamard’s theorem implies that it can be written
as h(z) = p(z)eq(z). But the RHS has growth order deg q (Ex!), so a contradiction to
the assumption ρ is non-integral.
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